A drop or two of cold cream in hot coffee can go a long way toward improving one’s morning. But what if the two liquids didn’t mix?
MIT scientists have now explained why under certain conditions a droplet of liquid should not coalesce with the liquid surface below – using silicone oil sitting on a warm bath. If the droplet is very cold, and the bath sufficiently hot, then the droplet should “levitate” on the bath’s surface, as a result of the flows induced by the temperature difference.
The team’s results, published in the Journal of Fluid Mechanics, offer a detailed, mathematical understanding of drop coalescence, which can be observed in everday phenomena, from milk poured in coffee to raindrops skittering across puddles, and sprays created in surf zones.
Originally published by Cosmos as A floating droplet
Cosmos
Curated content from the editorial staff at Cosmos Magazine.
Read science facts, not fiction...
There’s never been a more important time to explain the facts, cherish evidence-based knowledge and to showcase the latest scientific, technological and engineering breakthroughs. Cosmos is published by The Royal Institution of Australia, a charity dedicated to connecting people with the world of science. Financial contributions, however big or small, help us provide access to trusted science information at a time when the world needs it most. Please support us by making a donation or purchasing a subscription today.