It is so sensitive it can capture waves of atoms excited by a laser pulse and travelling through a crystal lattice at 45,000 kilometres per second.
The camera, called STAMP, for Sequentially Timed All-optical Mapping Photography, is more than 1,000 times faster than conventional high-speed cameras.
The technology “holds great promise for studying a diverse range of previously unexplored complex ultrafast phenomena”, said Keiichi Nakagawa, a research fellow at the University of Tokyo, who worked to develop the camera.
“Many physical and biological phenomena are difficult to reproduce,” said Nakagawa. “This inspired me to work on an ultrafast camera that could take multiple frames in a single shot.”
Conventional high-speed cameras are limited by the processing speed of their mechanical and electrical components. STAMP overcomes these limitations by using only fast, optical components.
STAMP relies on a property of light called dispersion that can be observed in the way a misty sky splits sunshine into a rainbow of colours. Similarly, STAMP splits an ultrashort pulse of light into a barrage of different coloured flashes that hit the imaged object in rapid-fire succession. Each separate colour flash can then be analysed to string together a moving picture of what the object looked like over the time it took the dispersed light pulse to travel through the device.