5 November 2008

Star Trek-style shields could become reality

Agence France-Presse
Scientists believe they have found a way of shielding astronauts from a dangerous source of space radiation, thus lifting a major doubt clouding the dream to send humans to Mars.
The Earth's magnetosphere

Storm deflector: The Earth's magnetic shield naturally deflects solar radiation from the Sun (coming from the left of image). Now experts think the same principle could be used to protect spaceships too. Credit: NASA

PARIS: Scientists believe they have found a way of shielding astronauts from a dangerous source of space radiation, thus lifting a major doubt clouding the dream to send humans to Mars.

Their breakthrough is reported this week in the journal Plasma Physics and Controlled Fusion – it takes forward ideas born in the golden age of science fiction, including a proton shield used in the TV show Star Trek, say the researchers.

Solar storms

Space weather is one of the greatest challenges facing a manned mission to the Red Planet. Even the shortest round trip (the distance varies between 55 million and more than 400 million kilometres) would take at least 18 months.

During this time, the crew would be exposed to sub-atomic particles that whizz through space, capable of slicing through DNA like a hot knife through butter, and boosting the risk of cancer and other disorders.

The peril has been known for nearly half a century, but has seemed insoluble because costs and technological difficulty. Some experts have toyed with the idea of shielding the crew with lead or massive tanks of water, but the price of lifting this load into orbit from Earth is mind-spinning.

Another idea, born in the 1960s, would be to swathe a spaceship with a replica of Earth’s own magnetic field. Our weak two-pole field deflects incoming cosmic rays, protecting life on Earth as well as astronauts in low Earth orbit.

Fresh take on an old idea

According to these calculations, the spacecraft would have to generate a magnetic field hundreds of kilometres across. But such equipment would be huge and drain the ship’s energy supply and its powerful field could well harm the crew.

Now, however, British and Portuguese scientists have taken a fresh look at the old concept and say the magnetic field does not, in fact, have to be huge – a “bubble” just a few hundred metres across would suffice.

“The idea is really like in Star Trek, when Scottie turns on a shield to protect the starship Enterprise from proton beams – it’s almost identical really,” said Bob Bingham of the Rutherford Appleton Laboratory near Oxford in the United Kingdom.

His team’s study draws on numerical simulation that is also used by experts in nuclear fusion, in which a hot plasma is kept in place by a powerful magnetic field. This number-crunching technology gives a far more accurate picture of how individual particles behave when they collide with a two-pole magnetic field.

As a result, the researchers have been able to devise a smarter, miniaturised model of magnetic protection rather than the blunderbuss-style field generator that was envisaged in the past.

“mini magnetosphere”

Using a plasma lab at the Superior Technical Institute in Lisbon, Portugal, the team tested a scaled down version of the device – its full details are secret, as patents are being sought – in a simulation of a solar storm of atomic particles.

Scaled up for a trip to Mars, the device would weigh around “several hundred kilos” and use only about a kilowatt of energy, or around one half to one third of the typical power consumption of today’s communications satellites, said Bingham.

The force of the magnetic field would replicate that of the Earth’s own, but, to minimise any risk to crew close to its source, could be carried in unmanned spacecraft flying either side of the crewship.

Bingham said the “mini magnetosphere” was being pitched both to the European Space Agency (ESA) and NASA. It would scatter almost all particles dispatched in “solar storms” – protons belched out by the Sun, he said.

Kevlar waistcoat

It would not work against a somewhat less dangerous problem, of high-energy cosmic rays that fly across interstellar distances, but the ship could be swathed with material, like a kevlar bullet-proof waistcoat, against that threat.

“It certainly will be the answer if we go to Mars, because going to Mars will take about 18 months and we need to protect the astronauts against these storms,” said Bingham.

In 2001, a NASA study found that at least 39 former astronauts suffered cataracts after flying in space, 36 of whom had taken part in missions beyond Earth’s orbit. Cataracts are also a problem for pilots who spend a lot of time flying high in Earth’s atmosphere.

In another study, the agency has tentatively estimated that a trip to Mars and back would give a 40-year-old non-smoking man a 40 per cent risk of developing fatal cancer after he returned to Earth, or twice the terrestrial risk.


Sign up to our free newsletter and have "This Week in Cosmos" delivered to your inbox every Monday.

>> More information
Like us on Facebook
Follow @CosmosMagazine
Add Cosmos to your Google+ circles

Get a weekly dose of Cosmos delivered straight to your inbox!

  • The latest in science each week
  • All the updates on our new website launch
  • Exclusive offers and competitions

Enter your name and email address below: